ロゴマーク
研究

研究

BDRでは、様々な分野の研究者が協力して、より高い目標に向かって研究を進めています。

セミナー・シンポジウム

セミナー・イベント

BDRでは、ライフサイエンス分野の国際的な研究者を招いて、年1回のシンポジウムや定期的なセミナーを開催しています。

働く・学ぶ

働く・学ぶ

BDRでは、様々なバックグラウンドを持つ人々を受け入れ、オープンで協力的な研究環境の構築に努めています。

つながる・楽しむ

つながる・楽しむ

BDRでは、様々なメディアや活動を通じて、研究の魅力や意義を社会に発信しています。

ニュース

ニュース

最新の研究、イベント、研究者のインタビューなど、理研BDRの最新情報をお届けします。

BDRについて

BDRについて

理研の強みを生かし学際的なアプローチで生命の根源を探求し、社会の課題に応えます。

木村 航 | 心臓再生研究チーム

業績一覧

Xiao F, Nguyen N, Wang P, et al.
Adducin Regulates Sarcomere Disassembly During Cardiomyocyte Mitosis
Circulation 150(10), (2024) doi: 10.1161/CIRCULATIONAHA.122.059102

Saito Y, Sugiura Y, Sakaguchi A, et al.
Postnatal xanthine metabolism regulates cardiac regeneration in mammals
bioRxiv (2024) doi: 10.1101/2024.07.24.605040

Nishiyama C, Saito Y, Sakaguchi A, et al.
Prolonged Myocardial Regenerative Capacity in Neonatal Opossum.
Circulation 146(2), 125-139 (2022) doi: 10.1161/CIRCULATIONAHA.121.055269

Sakaguchi A, Kawasaki M, Saito Y, et al.
Benzyl isothiocyanate induces cardiomyocyte proliferation and heart regeneration
bioRxiv 146, (2022) doi: 10.1101/2021.09.08.459197

Sakaguchi A, Kimura W.
Metabolic regulation of cardiac regeneration: roles of hypoxia, energy homeostasis, and mitochondrial dynamics.
Current Opinion in Genetics and Development 70, 54-60 (2021) doi: 10.1016/j.gde.2021.05.009

Sakaguchi A, Kimura W.
Metabolic regulation of cardiac regeneration: roles of hypoxia, energy homeostasis, and mitochondrial dynamics
Current Opinion in Genetics & Development 70, 54-60 (2021) doi: 10.1016/j.gde.2021.05.009

Iwasa N, Matsui TK, Iguchi N.
Gene expression profiles of human cerebral organoids identify PPAR pathway and PKM2 as key markers for oxygen-glucose deprivation and reoxygenation.
Frontiers in Cellular Neuroscience 15, 605030 (2021) doi: 10.3389/fncel.2021.605030

Saito Y, Kimura W.
Roles of phase separation for cellular redox maintenance
Frontiers in Genetics 12, 691946 (2021) doi: 10.3389/fgene.2021.691946

Sakaguchi A, Nishiyama C, Kimura W.
Cardiac Regeneration as an Environmental Adaptatio
Biochimica et Biophysica Acta - Molecular Cell Research 1867(4), 118623 (2020) doi: 10.1016/j.bbamcr.2019.118623

Sakaguchi A, Nishiyama C, Kimura W.
Cardiac regeneration as an environmental adaptation.
Biochimica et Biophysica Acta. Molecular Cell Research 1867(4), 118623 (2020) doi: 10.1016/j.bbamcr.2019.118623

Kimura W, Nakada Y, Sadek HA.
Hypoxia-induced myocardial regeneration.
Journal of Applied Physiology 123(6), 1676-1681 (2017) doi: 10.1152/japplphysiol.00328.2017

Nakada Y, Canseco D C, Thet S, et al.
Hypoxia induces heart regeneration in adult mice.
Nature 541, 222-227 (2017) doi: 10.1038/nature20173

Mani RS, Amin MA, Li X, et al.
Inflammation-Induced Oxidative Stress Mediates Gene Fusion Formation in Prostate Cancer.
Cell Reports 17(10), 2620-2631 (2016) doi: 10.1016/j.celrep.2016.11.019

Koizumi A, Sasano T, Kimura W, et al.
Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias.
European Heart Journal 37(18), 1469-75 (2016) doi: 10.1093/eurheartj/ehv449

Kimura W, Muralidhar S, Thet S.
Minor contribution of cardiac progenitor cells in neonatal heart regeneration.
Etiology and Morphogenesis of Congenital Heart Disease (Springer), (2015)

Kocabas F, Xie L, Xie J, et al.
Hypoxic metabolism in human hematopoietic stem cells.
Cell & Bioscience 5, 39 (2015) doi: 10.1186/s13578-015-0020-3

Uddin MK, Kimura W, Ishikura T, et al.
Foxc2 in pharyngeal arch mesenchyme is important for aortic arch artery remodelling and ventricular septum formation.
Biomedical Research 36(4), 235-45 (2015) doi: 10.2220/biomedres.36.235

Kimura W, Xiao F, Canseco D C, et al.
Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart.
Nature 523, 226-230 (2015) doi: 10.1038/nature14582

Canseco D C, Kimura W, Garg S, et al.
Human ventricular unloading induces cardiomyocyte proliferation.
Journal of the American College of Cardiology 65, 892-900 (2015) doi: 10.1016/j.jacc.2014.12.027

Sabine A, Bovay E, Demir CS, et al.
FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature.
The Journal of Clinical investigation 125(10), 3861-77 (2015) doi: 10.1172/JCI80454

Nakada Y, Kimura W, Sadek HA.
Defining the Limit of Embryonic Heart Regeneration.
Circulation 132(2), 77-8 (2015) doi: 10.1161/CIRCULATIONAHA.115.017070

Xiao F, Kimura W, Sadek HA.
A hippo "AKT" regulates cardiomyocyte proliferation.
Circulation Research 116(1), 3-5 (2015) doi: 10.1161/CIRCRESAHA.114.305325

Puente B N, Kimura W, Muralidhar S A, et al.
The oxygen rich postnatal environment induces cardiomyocyte cell cycle arrest through DNA damage response.
Cell 157, 565-579 (2014) doi: 10.1016/j.cell.2014.03.032

Kimura W, Muralidhar S, Canseco DC, et al.
Redox signaling in cardiac renewal.
Antioxidants & Redox Signaling 21(11), 1660-73 (2014) doi: 10.1089/ars.2014.6029

Mahmoud AI, Porrello ER, Kimura W, et al.
Surgical models for cardiac regeneration in neonatal mice.
Nature Protocols 9(2), 305-11 (2014) doi: 10.1038/nprot.2014.021

Wu YX, Sato E, Kimura W, Miura N.
Baicalin and scutellarin are proteasome inhibitors that specifically target chymotrypsin-like catalytic activity.
Phytotherapy Research 27(9), 1362-7 (2013) doi: 10.1002/ptr.4878

Kimura W, Sharkar MT, Sultana N, et al.
Generation and characterization of Tbx1-AmCyan1 transgenic reporter mouse line that selectively labels developing thymus primordium.
Transgenic Research 22(3), 659-66 (2013) doi: 10.1007/s11248-012-9664-5

Mahmoud AI, Kocabas F, Muralidhar SA, et al.
Meis1 regulates postnatal cardiomyocyte cell cycle arrest.
Nature 497(7448), 249-253 (2013) doi: 10.1038/nature12054

Kimura W, Sadek HA.
The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors.
Cardiovascular Diagnosis and Therapy 2(4), 278-89 (2012) doi: 10.3978/j.issn.2223-3652.2012.12.02

Okano J, Kimura W, Papaionnou VE, et al.
The regulation of endogenous retinoic acid level through CYP26B1 is required for elevation of palatal shelves.
Developmental Dynamics 241(11), 1744-56 (2012) doi: 10.1002/dvdy.23862

Wang B, Hikosaka K, Sultana N, et al.
Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes.
Biochemical and Biophysical Research Communications 417(1), 601-6 (2012) doi: 10.1016/j.bbrc.2011.12.014

Kimura W, Alev C, Sheng G, et al.
Identification of region-specific genes in the early chicken endoderm.
Gene Expression Patterns 11(3-4), 171-80 (2011) doi: 10.1016/j.gep.2010.11.002

Hikosaka K, Noritake H, Kimura W, et al.
Expression of human factors CD81, claudin-1, scavenger receptor, and occludin in mouse hepatocytes does not confer susceptibility to HCV entry.
Biomedical Research 32(2), 143-50 (2011)

Kimura W, Machii M, Xue X, et al.
Irxl1 mutant mice show reduced tendon differentiation and no patterning defects in musculoskeletal system development.
Genesis 49(1), 2-9 (2011) doi: 10.1002/dvg.20688

Yang Z, Hikosaka K, Sharkar MT, et al.
The mouse forkhead gene Foxp2 modulates expression of the lung genes.
Life Sciences 87(1-2), 17-25 (2010) doi: 10.1016/j.lfs.2010.05.009

Xue XD, Kimura W, Wang B, et al.
A unique expression pattern of Tbx10 in the hindbrain as revealed by Tbx10lacZ allele.
Genesis 48(5), 295-302 (2010) doi: 10.1002/dvg.20615

Katsumoto K, Fukuda K, Kimura W, et al.
Origin of pancreatic precursors in the chick embryo and the mechanism of endoderm regionalization.
Mechanisms of Development 126(7), 539-51 (2009) doi: 10.1016/j.mod.2009.03.006

Itakura T, Chandra A, Yang Z, et al.
The medaka FoxP2, a homologue of human language gene FOXP2, has a diverged structure and function.
Journal of Biochemistry 143(3), 407-16 (2008) doi: 10.1093/jb/mvm235

Kimura W, Yasugi S, Fukuda K.
Regional specification of the endoderm in the early chick embryo.
Development, Growth & Differentiation 49(5), 365-72 (2007) doi: 10.1111/j.1440-169X.2007.00933.x

Kimura W, Yasugi S, Stern CD, Fukuda K.
Fate and plasticity of the endoderm in the early chick embryo.
Developmental Biology 289(2), 283-95 (2006) doi: 10.1016/j.ydbio.2005.09.009

Hojo M, Takada I, Kimura W, et al.
Expression patterns of the chicken peroxisome proliferator-activated receptors (PPARs) during the development of the digestive organs.
Gene Expression Patterns 6(2), 171-9 (2006) doi: 10.1016/j.modgep.2005.06.009

日本語総説

齋藤祐一,西山千尋,木村航
再生医療における低酸素の応用可能性
細胞 54,364-367(2022)

木村航
環境ストレス応答と相分離
現代科学増刊 相分離生物学の全貌 29-34 (2020)

木村航
心筋新生による心臓再生 ―進化発生学(Evo-Devo)から学ぶ基礎研究,そして臨床に向けた課題―
再生医療の事業化と共同開発戦略 (2019)

坂口あかね,木村航
心筋細胞増殖制御機構の解明
心臓 50, 1272-1275 (2018)

木村航
酸素代謝による心筋細胞の細胞周期制御と心臓再生 
生化学 90, 385-387 (2018)

木村航
酸素代謝による心筋細胞の増殖制御 
生体の科学 68, 548-553 (2017)

中田祐二,木村航,Hesham A. Sadek
低酸素環境による成体マウスでの心臓再生
実験医学 35, 981-983 (2017)

木村航
酸化ストレス応答と心筋細胞の細胞周期調節
心臓 47, 1389-1404 (2015)

木村航,Hesaham A. Sadek
低酸素の状態にある細胞の細胞系譜の追跡による成体の心臓において増殖する心筋細胞の同定
ライフサイエンス新着論文レビュー http://first.lifesciencedb.jp/archives/10457 (2015)

木村航,Hesham A. Sadek
大気中の酸素による新生仔心筋の細胞周期停止
細胞工学 33, 1188-1189 (2014)

木村航,Hesham A. Sadek
出生ののちの酸素に富む環境は酸化ストレス応答を介して新生仔の心筋細胞において細胞周期の停止を誘導する
ライフサイエンス新着論文レビュー http://first.lifesciencedb.jp/archives/8709 (2014)

福田公子,木村航,八杉貞雄
胃・腸形成における上皮間充織相互作用
蛋白質核酸酵素 52, 126-132 (2007)

PAGE
TOP