logomark
Research

Research

BDR researchers coming from diverse research fields are working together to achieve higher goals.

Seminars & Symposia

Seminars & Symposia

BDR hosts annual symposium and regular seminars inviting international scientists in life science.

Careers & Study

Careers & Study

BDR embraces people from diverse backgrounds, and strives to create an open and supportive setting for research.

Outreach

Outreach

BDR communicates the appeal and significance of our research to society through the use of various media and activities.

News

News

From research, events, people and everything in between, find out what’s going on at RIKEN BDR.

About Us

About Us

Exploring the scientific foundations of life through interdisciplinary approaches to address society’s problems.

Collection of fly vials

Publications | Laboratory for Nutritional Biology

Publications

Oi A, Shinoda N, Nagashima S, et al.
A nonsecretory antimicrobial peptide mediates inflammatory organ damage in Drosophila renal tubules
Cell Reports 44(1), 115082 (2025) doi: 10.1016/j.celrep.2024.115082

Kosakamoto H, Sakuma C, Okada R, et al.
Context-dependent impact of the dietary non-essential amino acid tyrosine on Drosophila physiology and longevity.
Science Advances 10(35), eadn7167 (2024) doi: 10.1126/sciadv.adn7167

Kato Y, Sakuma C.
Extrinsic and intrinsic regulation of blood feeding in mosquitoes.
Current Opinion in Insect Science (2024) doi: 10.1016/j.cois.2024.101221

Sakuma C, Iwamoto T, Masuda K, et al.
Fibrinopeptide A-induced blood-feeding arrest in the yellow fever mosquito Aedes aegypti.
Cell Reports (2024) doi: 10.1016/j.celrep.2024.114354

Fujita Y, Kosakamoto H, Obata F.
Microbiota-derived acetylcholine can promote gut motility in Drosophila melanogaster.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 379(1901), 20230075 (2024) doi: 10.1098/rstb.2023.0075

Kosakamoto H, Miura M, Obata F.
Epidermal tyrosine catabolism is crucial for metabolic homeostasis and survival against high-protein diets in Drosophila.
Development 151(1), dev202372 (2024) doi: 10.1242/dev.202372

Kosakamoto H, Obata F, Kuraishi J, et al.
Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila.
Nature Communications 14(1), 7832 (2023) doi: 10.1038/s41467-023-43550-2

Sakuma C, Obata F.
Fat gain or eat cysteine.
Cell Research (2023) doi: 10.1038/s41422-023-00813-3

Sakuma C, Maekawa E, Kanuka H.
Automated Long-Term Monitoring of the Heat-Seeking Behavior of Mosquitoes.
Cold Spring Harbor Protocols (2023) doi: 10.1101/pdb.prot108173

Sakuma C, Maekawa E, Kanuka H.
Key Features and Considerations for Using Automated Long-Term Monitoring of Heat-Seeking Behavior of Mosquitoes.
Cold Spring Harbor Protocols (2023) doi: 10.1101/pdb.top107665

Onuma T, Yamauchi T, Kosakamoto H, et al.
Recognition of commensal bacterial peptidoglycans defines Drosophila gut homeostasis and lifespan.
PLOS Genetics 19(4), e1010709 (2023) doi: 10.1371/journal.pgen.1010709

Kosakamoto H, Okamoto N, Aikawa H, et al.
Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila.
Nature Metabolism 4(7), 944-959 (2022) doi: 10.1038/s42255-022-00608-7

Spratt SJ, Oguchi K, Miura K, et al.
Probing Methionine Uptake in Live Cells by Deuterium Labeling and Stimulated Raman Scattering.
Journal of Physical Chemistry. B 126(8), 1633-1639 (2022) doi: 10.1021/acs.jpcb.1c08343

Yamashita K, Oi A, Kosakamoto H, et al.
Activation of innate immunity during development induces unresolved dysbiotic inflammatory gut and shortens lifespan.
Disease Models & Mechanisms 14(9), dmm049103 (2021) doi: 10.1242/dmm.049103

Yoshinari Y, Kosakamoto H, Kamiyama T, et al.
The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster.
Nature Communications 12(1), 4818 (2021) doi: 10.1038/s41467-021-25146-w

Kashima H, Kamiya M, Obata F, et al.
Photoactivatable fluorophores for durable labelling of individual cells.
Chemical Communications 57(47), 5802-5805 (2021) doi: 10.1039/d1cc01488a

Yamauchi T, Oi A, Kosakamoto H, et al.
Gut Bacterial Species Distinctively Impact Host Purine Metabolites during Aging in Drosophila.
iScience 23, 101477 (2020) doi: 10.1016/j.isci.2020.101477

Kosakamoto H, Yamauchi T, Akuzawa-Tokita Y, et al.
Local Necrotic Cells Trigger Systemic Immune Activation via Gut Microbiome Dysbiosis in Drosophila.
Cell Reports 32(3), 107938 (2020) doi: 10.1016/j.celrep.2020.107938

Kosakamoto H, Fujisawa Y, Obata F, Miura M.
High expression of A-type lamin in the leading front is required for Drosophila thorax closure.
Biochemical and Biophysical Research Communications 499(2), 209-214 (2018) doi: 10.1016/j.bbrc.2018.03.128

Obata F, Tsuda-Sakurai K, Yamazaki T, et al.
Nutritional Control of Stem Cell Division through S-Adenosylmethionine in Drosophila Intestine.
Developmental Cell 44(6), 741-751 (2018) doi: 10.1016/j.devcel.2018.02.017

Obata F, Fons CO, Gould AP.
Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila.
Nature Communications 9(1), 975 (2018) doi: 10.1038/s41467-018-03070-w

Stefana MI, Driscoll PC, Obata F, et al.
Developmental diet regulates Drosophila lifespan via lipid autotoxins.
Nature Communications 8(1), 1384 (2017) doi: 10.1038/s41467-017-01740-9

Kashio S, Obata F, Miura M.
How tissue damage MET metabolism: Regulation of the systemic damage response.
Fly 11(1), 27-36 (2017) doi: 10.1080/19336934.2016.1221549

Obata F.
Tissue nonautonomous effects of fat body methionine metabolism on epithelial repair in Drosophila melanogaster.
2016 International Congress of Entomology (2016) doi: 10.1603/ice.2016.111433

Shinoda N, Obata F, Zhang L, Miura M.
Drosophila SETDB1 and caspase cooperatively fine-tune cell fate determination of sensory organ precursor.
Genes to Cells 21(4), 378-386 (2016) doi: 10.1111/gtc.12348

Obata F, Miura M.
Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan.
Nature Communications 6, 8332 (2015) doi: 10.1038/ncomms9332

Obata F, Tanaka S, Kashio S, et al.
Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.
BMC Biology 13, 48 (2015) doi: 10.1186/s12915-015-0160-2

Obata F, Tomioka K, Miura M.
Transcriptional profiling of apoptosis-deficient Drosophila mutants.
Genomics Data 2, 254-257 (2014) doi: 10.1016/j.gdata.2014.08.001

Ichikawa Y, Kamiya M, Obata F, et al.
Selective ablation of β-galactosidase-expressing cells with a rationally designed activatable photosensitizer.
Angewandte Chemie 53(26), 6772-6775 (2014) doi: 10.1002/anie.201403221

Kashio S, Obata F, Miura M.
Interplay of cell proliferation and cell death in Drosophila tissue regeneration.
Development, Growth & Differentiation 56(5), 368-375 (2014) doi: 10.1111/dgd.12139

Obata F, Kuranaga E, Tomioka K, et al.
Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis.
Cell Reports 7(3), 821-833 (2014) doi: 10.1016/j.celrep.2014.03.046

Shiraki N, Shiraki Y, Tsuyama T, et al.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Cell Metabolism 19(5), 780-794 (2014) doi: 10.1016/j.cmet.2014.03.017

Ming M, Obata F, Kuranaga E, Miura M.
Persephone/Spätzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila.
Journal of Biological Chemistry 289(11), 7558-7568 (2014) doi: 10.1074/jbc.M113.543884

Obata F, Kitami M, Inoue Y, et al.
Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis Cry1Aa toxin.
FEBS Journal 276(20), 5949-5959 (2009) doi: 10.1111/j.1742-4658.2009.07275.x

* denotes equal contribution.

PAGE
TOP