ロゴマーク
研究

研究

BDRでは、様々な分野の研究者が協力して、より高い目標に向かって研究を進めています。

セミナー・シンポジウム

セミナー・イベント

BDRでは、ライフサイエンス分野の国際的な研究者を招いて、年1回のシンポジウムや定期的なセミナーを開催しています。

働く・学ぶ

働く・学ぶ

BDRでは、様々なバックグラウンドを持つ人々を受け入れ、オープンで協力的な研究環境の構築に努めています。

つながる・楽しむ

つながる・楽しむ

BDRでは、様々なメディアや活動を通じて、研究の魅力や意義を社会に発信しています。

ニュース

ニュース

最新の研究、イベント、研究者のインタビューなど、理研BDRの最新情報をお届けします。

BDRについて

BDRについて

理研の強みを生かし学際的なアプローチで生命の根源を探求し、社会の課題に応えます。

Self-organized formation of human pluripotent stem cell-derived hippocampal, spinal cord, and cerebral organoids, and a novel method for its functional analysis
2020年2月17日 15:00 - 16:00

カテゴリー

セミナー

場所

神戸

会場

DB Bldg. SeminarRoom A7F

スピーカー

Hideya Sakaguchi

所属

Salk Institute for Biological Studies

概要

The cerebrum is the basis of human neural function including higher brain function, and the hippocampus is the basis of memory formation and learning. Because several neurological and neuropsychiatric disorders are attributed to cerebral and hippocampal dysfunction, knowing the fundamental aspects of formation of these neural tissues and its function is important.

The neural organoids, which are three-dimensional (3D) neural tissues generated from pluripotent or tissue stem cells, are attractive models of human neural development. The developing 3D neural organoids enable to approach the active and complexed human neural tissues that has been difficult to approach by previous research materials. Using the pioneering method for the induction of neural organoids called SFEBq (serum-free floating culture of embryoid body like aggregates with quick reaggregation), we have investigated organoids of several neural regions such as cerebral cortex, medial pallium (future hippocampus), choroid plexus, and spinal cord, by modulating the culture conditions based on the developmental information of each region. And using cerebral organoids, we investigated self-organized and complex human neural network activities that include synchronized and non-synchronized patterns. The spontaneous individual and synchronized activity of the network was measured via calcium imaging, and subsequent novel analysis enabled the examination of detailed cell activity patterns, providing simultaneous raster plots, cluster analyses, and cell distribution data.

Thus, by providing several types of human neural tissues and detailed analysis method for human neural activities, our research achievement will contribute for furthering future regenerative medicine and drug discovery for complexed neural disorders.

ホスト

Minoru Takasato

PAGE
TOP