BDR researchers coming from diverse research fields are working together to achieve higher goals.

Seminars & Symposia

Seminars & Symposia

BDR hosts annual symposium and regular seminars inviting international scientists in life science.

Careers & Study

Careers & Study

BDR embraces people from diverse backgrounds, and strives to create an open and supportive setting for research.



BDR communicates the appeal and significance of our research to society through the use of various media and activities.



From research, events, people and everything in between, find out what’s going on at RIKEN BDR.

About Us

About Us

Exploring the scientific foundations of life through interdisciplinary approaches to address society’s problems.

Photo of Team leder, Yu-Chiun Wang

Team Leader
Yu-Chiun Wang Ph.D.

Laboratory for Epithelial Morphogenesis

LocationKobe / Developmental Biology Buildings


Please replace [at] with @.

Recruiting graduate students

Elucidating the molecular and mechanical mechanisms underlying the formation of complex tissue structures.

The central question in developmental biology is how cells, tissues and organs acquire their specific functions and shapes. A large body of work over the past several decades has yielded a broad understanding of how functional specialization is achieved through differential gene expression. In contrast, far less is known about how cell shapes and tissue structures are controlled and remodeled. Although a general theme has emerged whereby cytoskeletal elements control the cell shapes, while alteration of individual cell shapes collectively organizes the tissue architecture, the underlying molecular and mechanical mechanisms remain poorly understood. My lab aims at identifying novel mechanisms that orchestrate the formation of three-dimensional epithelial structures. Our long-term goal is to comprehensively understand the mechanistic principles of tissue morphogenesis in order to conceptualize the origin of morphological diversity both within an organism and among evolutionary lineages.

We are currently focusing on how modifications of epithelial cell polarity control cell shapes using gastrulating Drosophila embryos as the model system. Our recent work identified a novel microtubule based mechanical mechanism that is crucial for maintaining homogeneities of cell sizes and shapes prior to morphogenesis, and yet becomes coupled to the changing cell polarity, thus repurposed for cell shortening that induces folding of the epithelial tissue. The polarity-based, microtubule-dependent mechanism contrasts with the canonical myosin-dependent apical constriction. Our ongoing work promises to delineate a novel mechanical force balance/imbalance process that underlies non-myosin based epithelial folding.

We employ an integrated approach that combines genetic manipulation, quantitative live imaging and computational mechanical modeling. We are also in the process of developing optogenetic and cell-type specific RNA-seq methodologies that could be used to manipulate and identify factors and parameters that control cell shape change and tissue deformation. Furthermore, our lab is engaged in international, multidisciplinary collaborations with scientists that specialize in evolutionary biology, computational mechanics, and theoretical physics to seek to better understand epithelial morphogenesis from a variety of different angles.

Research Theme

  • How does modification of cell polarity cause cell shape change and bending of an epithelial tissue?
  • How does physical coupling between adherens junctions and actin control the extent of invagination?
  • Developing strategies for quantitative 4D imaging and visualization of forces during morphogenesis
  • The evolutionary possibilities of novel and temporary morphogenetic structures

Selected Publications

Eritano AS, Bromley CL, Bolea Albero A, et al.
Tissue-Scale Mechanical Coupling Reduces Morphogenetic Noise to Ensure Precision during Epithelial Folding.
Developmental cell 53(2), 212-228 (2020) doi: 10.1016/j.devcel.2020.02.012

Takeda M, Sami M M, Wang YC.
A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift.
Nature Cell Biology 20, 36-45. (2018) doi: 10.1038/s41556-017-0001-3

Wen FL, Wang YC, Shibata T.
Epithelial folding driven by apical or basal-lateral modulation: geometric features, mechanical inference, and boundary effects.
Biophysical Journal 112, 2683-2695 (2017) doi: 10.1016/j.bpj.2017.05.012

Wang YC, Khan Z, Wieschaus E F.
Distinct Rap1 activity states control the extent of epithelial invagination via alpha-catenin.
Developmental Cell 25, 299-309 (2013) doi: 10.1016/j.devcel.2013.04.002

Wang YC, Khan Z, Kaschube M, Wieschaus E F.
Differential positioning of adherens junctions is associated with initiation of epithelial folding.
Nature 484, 390-3 (2012) doi: 10.1038/nature10938

Wang YC, Ferguson E L.
Spatial bistability of Dpp-receptor interactions during Drosophila dorsal-ventral patterning.
Nature 434, 229-34 (2005) doi: 10.1038/nature03318


WANG Yu-Chiunチームリーダーの写真

Team LeaderYu-Chiun Wang

  • yu-chiun.wang[at]riken.jp
    (Please replace [at] with @)

Yu-Chiun Wang

Team Leader

Chun Wai Kwan

Research Scientist

Sameer Thukral

Special Postdoctoral Researcher

Bipasha Dey

Postdoctoral Researcher

Anne Rosfelter

Postdoctoral Researcher

Michiko Takeda

Technical Staff I

Nishita Gattani

Research Associate

Nada Dougui

Research Associate

Yuko Fujiyama