logomark
Research

Research

BDR researchers coming from diverse research fields are working together to achieve higher goals.

Seminars & Symposia

Seminars & Symposia

BDR hosts annual symposium and regular seminars inviting international scientists in life science.

Careers & Study

Careers & Study

BDR embraces people from diverse backgrounds, and strives to create an open and supportive setting for research.

Outreach

Outreach

BDR communicates the appeal and significance of our research to society through the use of various media and activities.

News

News

From research, events, people and everything in between, find out what’s going on at RIKEN BDR.

About Us

About Us

Exploring the scientific foundations of life through interdisciplinary approaches to address society’s problems.

Examining human brain expansion through the lens of neural organoids
Aug. 17, 2021 16:00 - 17:00

Category

Seminar

Place

Other

Venue

Online

Speaker

Madeline Lancaster

Affiliation

Cell Biology Division of the MRC Laboratory of Molecular Biology

Summary

The human brain sets us apart as a species, with its size being one of its most striking features. Brain size is largely determined during development as vast numbers of neurons and supportive glia are generated. In an effort to better understand the events that determine the human brain's cellular makeup, and therefore its size, we use a human model system in a dish, called cerebral organoids. These 3D tissues are generated from pluripotent stem cells through neural differentiation and a supportive 3D microenvironment to generate organoids with the same tissue architecture as the early human fetal brain. Such organoids are allowing us to tackle questions previously impossible with more traditional approaches. Indeed, our recent findings provide insight into regulation of brain size and neuron number across ape species, identifying key stages of early neural stem cell expansion that set up a larger starting cell number to enable the production of increased numbers of neurons. We are also investigating the role of extrinsic regulators in determining numbers and types of neurons produced in the human cerebral cortex. Overall, our findings are pointing to key, human-specific aspects of brain development and function, that have important implications for neurological disease.

Host

Minoru Takasato

PAGE
TOP