ロゴマーク
研究

研究

BDRでは、様々な分野の研究者が協力して、より高い目標に向かって研究を進めています。

セミナー・シンポジウム

セミナー・イベント

BDRでは、ライフサイエンス分野の国際的な研究者を招いて、年1回のシンポジウムや定期的なセミナーを開催しています。

働く・学ぶ

働く・学ぶ

BDRでは、様々なバックグラウンドを持つ人々を受け入れ、オープンで協力的な研究環境の構築に努めています。

つながる・楽しむ

つながる・楽しむ

BDRでは、様々なメディアや活動を通じて、研究の魅力や意義を社会に発信しています。

ニュース

ニュース

最新の研究、イベント、研究者のインタビューなど、理研BDRの最新情報をお届けします。

BDRについて

BDRについて

理研の強みを生かし学際的なアプローチで生命の根源を探求し、社会の課題に応えます。

Two physical mechanisms by which cells may regulate tissue architecture
2018年9月19日 15:00 - 15:40

カテゴリー

セミナー

場所

大阪

会場

Osaka Lounge A1F

スピーカー

Alexander R. Dunn

所属

Department of Chemical Engineering, Stanford University

概要

In this talk I describe our work to understand how cells use mechanical forces to shape and remodel living tissues. In particular, I present experiments that explore two extremes of tissue architecture: sparse cells in an extracellular matrix (ECM), and tissues comprised almost entirely of living cells with little or no intervening ECM. In the first project, we sought to understand how cells adhere to, deform, and migrate through soft, three-dimensional (3D) ECMs. To do so, we used multicolor, time-lapse confocal imaging to quantify cytoskeletal motion and cell-generated matrix deformations for human fibroblasts embedded in 3D fibrin matrices, an environment that cells encounter during wound healing. Quantitative analysis of cytoskeletal and cell adhesion dynamics suggests that a modified version of the molecular clutch model of cytoskeletal force transduction, which was originally developed to describe cell migration on hard, flat surfaces, can be extended to understand cell migration in some 3D contexts. In a second project, we used colonies of human embryonic stem cells (hESCs) adhering to soft hydrogel substrates to examine the basic physical principles that determine the shape of simple 3D tissues. We found that a balance of surface tension, cell-ECM adhesion energy, and an active cell spreading term was sufficient to describe the shapes of hESC colonies adhering to substrates with a wide range of elastic moduli. Our results suggest the intriguing possibility that the addition of a cellular traction force to the equations used to model droplet spreading may be sufficient to describe the shapes adopted by tissues in a variety of contexts.

ホスト

Toshio Yanagida

PAGE
TOP