logomark
Research

Research

BDR researchers coming from diverse research fields are working together to achieve higher goals.

Seminars & Symposia

Seminars & Symposia

BDR hosts annual symposium and regular seminars inviting international scientists in life science.

Careers & Study

Careers & Study

BDR embraces people from diverse backgrounds, and strives to create an open and supportive setting for research.

Outreach

Outreach

BDR communicates the appeal and significance of our research to society through the use of various media and activities.

News

News

From research, events, people and everything in between, find out what’s going on at RIKEN BDR.

About Us

About Us

Exploring the scientific foundations of life through interdisciplinary approaches to address society’s problems.

Mechanical forces influence three-dimensional cell behaviours in the mouse embryo
May 27, 2019 16:00 - 17:00

Category

Seminar

Place

Kobe

Venue

DB Bldg. SeminarRoom A7F

Speaker

Dr. Hirotaka Tao

Affiliation

The Hospital for Sick Children, Canada

A fundamental question in developmental biology is the how organs are shaped. Morphogenesis has long been recognised as an inherently physical process. In recent years, we have been combining data from live light sheet imaging with biophysical approaches and genetics to study solid organ primordia such as the limb buds and branchial arches in the mouse embryo. We showed how physical tissue stress is regulated by developmental pathways to orient cell rearrangements that remodel ectoderm. More recently, we tackled the challenge of 3D mesenchymal morphogenesis by generating a magnetic tweezer system to map tissue stiffness and a genetically encoded FRET-based force sensor to measure cortical forces of individual cells in vivo. The emerging data suggest that two modes of cell movement, rearrangements and crawling, both contribute to collective mesenchymal cell movements that shape organ primordia. Cell rearrangements can be considered to result from liquid-like rigidity phase properties that are determined by cellular geometries and oscillations. There is correlative evidence that cell crawling is oriented by durotaxis, or the movement of cells up a stiffness gradient. In this seminar, I show our current research and discuss our attempts to bridge collective multicellular behaviours to organ shape.

Host

Hiroshi Kiyonari

PAGE
TOP